rw-book-cover

Metadata

Highlights

  • Google cofounder Larry Page thinks superintelligent AI is “just the next step in evolution.” In fact, Page, who’s worth about $120 billion, has reportedly argued that efforts to prevent AI-driven extinction and protect human consciousness are “speciesist” and “sentimental nonsense.” (View Highlight)
  • In July, former Google DeepMind senior scientist Richard Sutton — one of the pioneers of reinforcement learning, a major subfield of AI — said that the technology “could displace us from existence,” and that “we should not resist succession.” In a 2015 talk, Sutton said, suppose “everything fails” and AI “kill[s] us all”; he asked, “Is it so bad that humans are not the final form of intelligent life in the universe?” (View Highlight)
  • “Biological extinction, that’s not the point,” Sutton, sixty-six, told me. “The light of humanity and our understanding, our intelligence — our consciousness, if you will — can go on without meat humans.” (View Highlight)
  • Yoshua Bengio, fifty-nine, is the second-most cited living scientist, noted for his foundational work on deep learning. Responding to Page and Sutton, Bengio told me, “What they want, I think it’s playing dice with humanity’s future. I personally think this should be criminalized.” A bit surprised, I asked what exactly he wanted outlawed, and he said efforts to build “AI systems that could overpower us and have their own self-interest by design.” In May, Bengio began writing and speaking about how advanced AI systems might go rogue and pose an extinction risk to humanity. (View Highlight)
  • Bengio posits that future, genuinely human-level AI systems could improve their own capabilities, functionally creating a new, more intelligent species. Humanity has driven hundreds of other species extinct, largely by accident. He fears that we could be next — and he isn’t alone. (View Highlight)
  • Bengio shared the 2018 Turing Award, computing’s Nobel Prize, with fellow deep learning pioneers Yann LeCun and Geoffrey Hinton. Hinton, the most cited living scientist, made waves in May when he resigned from his senior role at Google to more freely sound off about the possibility that future AI systems could wipe out humanity. Hinton and Bengio are the two most prominent AI researchers to join the “x-risk” community. Sometimes referred to as AI safety advocates or doomers, this loose-knit group worries that AI poses an existential risk to humanity. (View Highlight)
  • Hinton and Bengio were also the first authors of an October position paper warning about the risk of “an irreversible loss of human control over autonomous AI systems,” joined by famous academics like Nobel laureate Daniel Kahneman and Sapiens author Yuval Noah Harari. (View Highlight)
  • LeCun, who runs AI at Meta, agrees that human-level AI is coming but said in a public debate against Bengio on AI extinction, “If it’s dangerous, we won’t build it.” (View Highlight)
  • AI developer Connor Leahy told me, “It’s more like we’re poking something in a Petri dish” than writing a piece of code. The October position paper warns that “no one currently knows how to reliably align AI behavior with complex values.” (View Highlight)
  • In spite of all this uncertainty, AI companies see themselves as being in a race to make these systems as powerful as they can — without a workable plan to understand how the things they’re creating actually function, all while cutting corners on safety to win more market share. Artificial general intelligence (AGI) is the holy grail that leading AI labs are explicitly working toward. AGI is often defined as a system that is at least as good as humans at almost any intellectual task. It’s also the thing that Bengio and Hinton believe could lead to the end of humanity. (View Highlight)
  • Anthropic, a leading AI lab founded by safety-forward ex-OpenAI staff, recently worked with biosecurity experts to see how much an LLM could help an aspiring bioterrorist. Testifying before a Senate subcommittee in July, Anthropic CEO Dario Amodei reported that certain steps in bioweapons production can’t be found in textbooks or search engines, but that “today’s AI tools can fill in some of these steps, albeit incompletely,” and that “a straightforward extrapolation of today’s systems to those we expect to see in two to three years suggests a substantial risk that AI systems will be able to fill in all the missing pieces.” (View Highlight)
  • In October, New Scientist reported that Ukraine made the first battlefield use of lethal autonomous weapons (LAWs) — literally killer robots. The United States, China, and Israel are developing their own LAWs. Russia has joined the United States and Israel in opposing new international law on LAWs. (View Highlight)
  • I spoke with some of the most prominent voices from the AI ethics community, like computer scientists Joy Buolamwini, thirty-three, and Inioluwa Deborah Raji, twenty-seven. Each has conducted pathbreaking research into existing harms caused by discriminatory and flawed AI models whose impacts, in their view, are obscured one day and overhyped the next. Like that of many AI ethics researchers, their work blends science and activism. (View Highlight)
  • A frequent argument from this crowd is that the extinction narrative overhypes the capabilities of Big Tech’s products and dangerously “distracts” from AI’s immediate harms. At best, they say, entertaining the x-risk idea is a waste of time and money. At worst, it leads to disastrous policy ideas. (View Highlight)
  • But many of the x-risk believers highlighted that the positions “AI causes harm now” and “AI could end the world” are not mutually exclusive. Some researchers have tried explicitly to bridge the divide between those focused on existing harms and those focused on extinction, highlighting potential shared policy goals. AI professor Sam Bowman, another person whose name is on the extinction letter, has done research to reveal and reduce algorithmic bias and reviews submissions to the main AI ethics conference. Simultaneously, Bowman has called for more researchers to work on AI safety and wrote of the “dangers of underclaiming” the abilities of LLMs. (View Highlight)
  • The x-risk community commonly invokes climate advocacy as an analogy, asking whether the focus on reducing the long-term harms of climate change dangerously distracts from the near-term harms from air pollution and oil spills. (View Highlight)
  • A third camp worries that when it comes to AI, we’re not actually moving fast enough. Prominent capitalists like billionaire Marc Andreessen agree with safety folks that AGI is possible but argue that, rather than killing us all, it will usher in an indefinite golden age of radical abundance and borderline magical technologies. This group, largely coming from Silicon Valley and commonly referred to as AI boosters, tends to worry far more that regulatory overreaction to AI will smother a transformative, world-saving technology in its crib, dooming humanity to economic stagnation. (View Highlight)
  • Some techno-optimists envision an AI-powered utopia that makes Karl Marx seem unimaginative. The Guardian recently released a mini-documentary featuring interviews from 2016 through 2019 with OpenAI’s chief scientist, Ilya Sutskever, who boldly pronounces: “AI will solve all the problems that we have today. It will solve employment, it will solve disease, it will solve poverty. But it will also create new problems.” (View Highlight)
  • Andreessen, along with “pharma bro” Martin Shkreli, is perhaps the most famous proponent of “effective accelerationism,” also called “e/acc,” a mostly online network that mixes cultish scientism, hypercapitalism, and the naturalistic fallacy. E/acc, which went viral this summer, builds on reactionary writer Nick Land’s theory of accelerationism, which argues that we need to intensify capitalism to propel ourselves into a posthuman, AI-powered future. E/acc takes this idea and adds a layer of physics and memes, mainstreaming it for a certain subset of Silicon Valley elites. It was formed in reaction to calls from “decels” to slow down AI, which have come significantly from the effective altruism (EA) community, from which e/acc takes its name. (View Highlight)
  • AI booster Richard Sutton — the scientist ready to say his goodbyes to “meat humans” — is now working at Keen AGI, a new start-up from John Carmack, the legendary programmer behind the 1990s video game Doom. The company mission, according to Carmack: “AGI or bust, by way of Mad Science!” (View Highlight)
  • In February, Sam Altman tweeted that Eliezer Yudkowsky might eventually “deserve the Nobel Peace Prize.” Why? Because Altman thought the autodidactic researcher and Harry Potter fan-fiction author had done “more to accelerate AGI than anyone else.” Altman cited how Yudkowsky helped DeepMind secure pivotal early-stage funding from Peter Thiel as well as Yudkowsky’s “critical” role “in the decision to start OpenAI.” (View Highlight)
  • Yudkowsky was an accelerationist before the term was even coined. At the age of seventeen — fed up with dictatorships, world hunger, and even death itself — he published a manifesto demanding the creation of a digital superintelligence to “solve” all of humanity’s problems. Over the next decade of his life, his “technophilia” turned to phobia, and in 2008 he wrote about his conversion story, admitting that “to say, I almost destroyed the world!, would have been too prideful.” (View Highlight)
  • Panicking in response to the OpenAI-powered Bing search engine, Google declared a “code red,” “recalibrate[d]” their risk appetite, and rushed to release Bard, their LLM, over staff opposition. In internal discussions, employees called Bard “a pathological liar” and “cringe-worthy.” Google published it anyway. (View Highlight)
  • Dan Hendrycks, the director of the Center for AI Safety, said that “cutting corners on safety … is largely what AI development is driven by… . I don’t think, actually, in the presence of these intense competitive pressures, that intentions particularly matter.” Ironically, Hendrycks is also the safety adviser to xAI, Elon Musk’s latest venture. (View Highlight)
  • The three leading AI labs all began as independent, mission-driven organizations, but they are now either full subsidiaries of tech behemoths (Google DeepMind) or have taken on so many billions of dollars in investment from trillion-dollar companies that their altruistic missions may get subsumed by the endless quest for shareholder value (Anthropic has taken up to [13 billion bought them 49 percent of OpenAI’s for-profit arm). The New York Times recently reported that DeepMind’s founders became “increasingly worried about what Google would do with their inventions. In 2017, they tried to break away from the company. Google responded by increasing the salaries and stock award packages of the DeepMind founders and their staff. They stayed put.” (View Highlight)
  • Between 2020 and 2022, more than $600 billion in corporate investment flowed into the industry, and a single 2021 AI conference hosted nearly thirty thousand researchers. At the same time, a September 2022 estimate found only four hundred full-time AI safety researchers, and the primary AI ethics conference had fewer than nine hundred attendees in 2023. (View Highlight)
  • The way software “ate the world,” we should expect AI to exhibit a similar winner-takes-all dynamic that will lead to even greater concentrations of wealth and power. Altman has predicted that the “cost of intelligence” will drop to near zero as a result of AI, and in 2021 he wrote that “even more power will shift from labor to capital.” He continued, “If public policy doesn’t adapt accordingly, most people will end up worse off than they are today.” Also in his “spicy take” thread, Jack Clark wrote, “economy-of-scale capitalism is, by nature, anti-democratic, and capex-intensive AI is therefore anti-democratic.” (View Highlight)
  • Within less than a week, OpenAI executives and Altman had collaborated with Microsoft and the company’s staff to engineer his successful return and the removal of most of the board members behind his firing. Microsoft’s first preference was having Altman back as CEO. The unexpected ouster initially sent the legacy tech giant’s stock plunging 5 percent ($140 billion), and the announcement of Altman’s reinstatement took it to an all-time high. Loath to be “blindsided” again, Microsoft is now taking a nonvoting seat on the nonprofit board. (View Highlight)
  • Immediately after Altman’s firing, X exploded, and a narrative largely fueled by online rumors and anonymously sourced articles emerged that safety-focused effective altruists on the board had fired Altman over his aggressive commercialization of OpenAI’s models at the expense of safety. Capturing the tenor of the overwhelming e/acc response, then pseudonymous founder @BasedBeffJezos posted, “EAs are basically terrorists. Destroying 80B of value overnight is an act of terrorism.” (View Highlight)
  • The picture that emerged from subsequent reporting was that a fundamental mistrust of Altman, not immediate concerns about AI safety, drove the board’s choice. The Wall Street Journal found that “there wasn’t one incident that led to their decision to eject Altman, but a consistent, slow erosion of trust over time that made them increasingly uneasy.” (View Highlight)
  • The New Yorker reported that “some of the board’s six members found Altman manipulative and conniving.” Days after the firing, a DeepMind AI safety researcher who used to work for OpenAI wrote that Altman “lied to me on various occasions” and “was deceptive, manipulative, and worse to others,” an assessment echoed by recent reporting in Time. (View Highlight)

New highlights added February 12, 2024 at 10:43 AM

  • This wasn’t Altman’s first time being fired. In 2019, Y Combinator founder Paul Graham removed Altman from the incubator’s helm over concerns that he was prioritizing his own interests over those of the organization. Graham has previously said, “Sam is extremely good at becoming powerful.” (View Highlight)
  • Recent AI progress has been driven by the culmination of many decades-long trends: increases in the amount of computing power (referred to as “compute”) and data used to train AI models, which themselves have been amplified by significant improvements in algorithmic efficiency. Since 2010, the amount of compute used to train AI models has increased roughly one-hundred-millionfold. Most of the advances we’re seeing now are the product of what was at the time a much smaller and poorer field. (View Highlight)
  • It’s possible, of course, that AI capability gains will hit a wall. Researchers may run out of good data to use. Moore’s law — the observation that the number of transistors on a microchip doubles every two years — will eventually become history. Political events could disrupt manufacturing and supply chains, driving up compute costs. And scaling up systems may no longer lead to better performance. (View Highlight)
  • But the reality is that no one knows the true limits of existing approaches. A clip of a January 2022 Yann LeCun interview resurfaced on Twitter this year. LeCun said, “I don’t think we can train a machine to be intelligent purely from text, because I think the amount of information about the world that’s contained in text is tiny compared to what we need to know.” To illustrate his point, he gave an example: “I take an object, I put it on the table, and I push the table. It’s completely obvious to you that the object would be pushed with the table.” However, with “a text-based model, if you train a machine, as powerful as it could be, your ‘GPT-5000’ … it’s never gonna learn about this.” (View Highlight)
  • History is littered with bad predictions about the pace of innovation. A New York Times editorial claimed it might take “one million to ten million years” to develop a flying machine — sixty-nine days before the Wright Brothers first flew. In 1933, Ernest Rutherford, the “father of nuclear physics,” confidently dismissed the possibility of a neutron-induced chain reaction, inspiring physicist Leo Szilard to hypothesize a working solution the very next day — a solution that ended up being foundational to the creation of the atomic bomb. (View Highlight)
  • One conclusion that seems hard to avoid is that, recently, the people who are best at building AI systems believe AGI is both possible and imminent. Perhaps the two leading AI labs, OpenAI and DeepMind, have been working toward AGI since their inception, starting when admitting you believed it was possible anytime soon could get you laughed out of the room. (View Highlight)
  • Open Philanthropy (OP) AI risk researcher Ajeya Cotra wrote to me that “the logical end point of a maximally efficient capitalist or market economy” wouldn’t involve humans because “humans are just very inefficient creatures for making money.” We value all these “commercially unproductive” emotions, she writes, “so if we end up having a good time and liking the outcome, it’ll be because we started off with the power and shaped the system to be accommodating to human values.” (View Highlight)
  • OP is an EA-inspired foundation financed by Facebook cofounder Dustin Moskovitz. It’s the leading funder of AI safety organizations, many of which are mentioned in this article. OP also granted $30 million to OpenAI to support AI safety work two years before the lab spun up a for-profit arm in 2019. I previously received a onetime grant to support publishing work at New York Focus, an investigative news nonprofit covering New York politics, from EA Funds, which itself receives funding from OP. After I first encountered EA in 2017, I began donating 10 to 20 percent of my income to global health and anti–factory farming nonprofits, volunteered as a local group organizer, and worked at an adjacent global poverty nonprofit. EA was one of the earliest communities to seriously engage with AI existential risk, but I looked at the AI folks with some wariness, given the uncertainty of the problem and the immense, avoidable suffering happening now. (View Highlight)
  • A compliant AGI would be the worker capitalists can only dream of: tireless, motivated, and unburdened by the need for bathroom breaks. Managers from Frederick Taylor to Jeff Bezos resent the various ways in which humans aren’t optimized for output — and, therefore, their employer’s bottom line. Even before the days of Taylor’s scientific management, industrial capitalism has sought to make workers more like the machines they work alongside and are increasingly replaced by. As The Communist Manifesto presciently observed, capitalists’ extensive use of machinery turns a worker into “an appendage of the machine.” (View Highlight)
  • The common x-risk argument goes: once AI systems reach a certain threshold, they’ll be able to recursively self-improve, kicking off an “intelligence explosion.” If a new AI system becomes smart — or just scaled up — enough, it will be able to permanently disempower humanity. (View Highlight)
  • There is no fundamental reason why AI progress would slow or halt when it reaches human-level abilities… . Compared to humans, AI systems can act faster, absorb more knowledge, and communicate at a far higher bandwidth. Additionally, they can be scaled to use immense computational resources and can be replicated by the millions. (View Highlight)
  • Here’s a stylized version of the idea of “population” growth spurring an intelligence explosion: if AI systems rival human scientists at research and development, the systems will quickly proliferate, leading to the equivalent of an enormous number of new, highly productive workers entering the economy. Put another way, if GPT-7 can perform most of the tasks of a human worker and it only costs a few bucks to put the trained model to work on a day’s worth of tasks, each instance of the model would be wildly profitable, kicking off a positive feedback loop. This could lead to a virtual “population” of billions or more digital workers, each worth much more than the cost of the energy it takes to run them. Sutskever thinks it’s likely that “the entire surface of the earth will be covered with solar panels and data centers.” (View Highlight)
  • These digital workers might be able to improve on our AI designs and bootstrap their way to creating “superintelligent” systems, whose abilities Alan Turing speculated in 1951 would soon “outstrip our feeble powers.” And, as some AI safety proponents argue, an individual AI model doesn’t have to be superintelligent to pose an existential threat; there might just need to be enough copies of it. Many of my sources likened corporations to superintelligences, whose capabilities clearly exceed those of their constituent members. (View Highlight)
  • “Just unplug it,” goes the common objection. But once an AI model is powerful enough to threaten humanity, it will probably be the most valuable thing in existence. You might have an easier time “unplugging” the New York Stock Exchange or Amazon Web Services. (View Highlight)
  • A lazy superintelligence may not pose much of a risk, and skeptics like Allen Institute for AI CEO Oren Etzioni, complexity professor Melanie Mitchell, and AI Now Institute managing director Sarah Myers West all told me they haven’t seen convincing evidence that AI systems are becoming more autonomous. Anthropic’s Dario Amodei seems to agree that current systems don’t exhibit a concerning level of agency. However, a completely passive but sufficiently powerful system wielded by a bad actor is enough to worry people like Bengio. (View Highlight)
  • The fear that keeps many x-risk people up at night is not that an advanced AI would “wake up,” “turn evil,” and decide to kill everyone out of malice, but rather that it comes to see us as an obstacle to whatever goals it does have. In his final book, Brief Answers to the Big Questions, Stephen Hawking articulated this, saying, “You’re probably not an evil ant-hater who steps on ants out of malice, but if you’re in charge of a hydroelectric green-energy project and there’s an anthill in the region to be flooded, too bad for the ants.” (View Highlight)
  • Yet others see a Big Tech conspiracy looming behind these concerns. Some people focused on immediate harms from AI argue that the industry is actively promoting the idea that their products might end the world, like Myers West of the AI Now Institute, who says she “see[s] the narratives around so-called existential risk as really a play to take all the air out of the room, in order to ensure that there’s not meaningful movement in the present moment.” Strangely enough, Yann LeCun and Baidu AI chief scientist Andrew Ng purport to agree. (View Highlight)
  • When I put the idea to x-risk believers, they often responded with a mixture of confusion and exasperation. OP’s Ajeya Cotra wrote back: “I wish it were less of an industry-associated thing to be concerned about x-risk, because I think it’s just really fundamentally, on the merits, a very anti-industry belief to have… . If the companies are building things that are going to kill us all, that’s really bad, and they should be restricted very stringently by the law.” (View Highlight)
  • One understandable source of suspicion is that Sam Altman is now one of the people most associated with the existential risk idea, but his company has done more than any other to advance the frontier of general-purpose AI. (View Highlight)
  • Altman implored Congress in May to regulate the AI industry, but a November investigation found that OpenAI’s quasi-parent company Microsoft was influential in the ultimately unsuccessful lobbying to exclude “foundation models” like ChatGPT from regulation by the forthcoming EU AI Act. And Altman did plenty of his own lobbying in the EU, even threatening to pull out of the region if regulations became too onerous (threats he quickly walked back). Speaking on a CEO panel in San Francisco days before his ouster, Altman said that “current models are fine. We don’t need heavy regulation here. Probably not even for the next couple of generations.” (View Highlight)
  • President Joe Biden’s recent “sweeping” executive order on AI seems to agree: its safety test information sharing requirements only affect models larger than any that have likely been trained so far. Myers West called these kinds of “scale thresholds” a “massive carveout.” Anderljung wrote to me that regulation should scale with a system’s capabilities and usage, and said that he “would like some regulation of today’s most capable and widely used models,” but he thinks it will “be a lot more politically viable to impose requirements on systems that are yet to be developed.” (View Highlight)
  • Inioluwa Deborah Raji ventured that if the tech giants “know that they have to be the bad guy in some dimension … they would prefer for it to be abstract and long-term in timeline.” This sounds far more plausible to me than the idea that Big Tech actually wants to promote the idea that their products have a decent chance of literally killing everyone. (View Highlight)
  • If AI actually does save the world, whoever created it may hope to be lauded like a modern Julius Caesar. And even if it doesn’t, whoever first builds “the last invention that man need ever make” will not have to worry about being forgotten by history — unless, of course, history ends abruptly after their invention. (View Highlight)
  • Connor Leahy thinks that, on our current path, the end of history will shortly follow the advent of AGI. With his flowing hair and unkempt goatee, he would probably look at home wearing a sandwich board reading “The end is nigh” — though that hasn’t prevented him from being invited to address the British House of Lords or CNN. The twenty-eight-year-old CEO of Conjecture and cofounder of EleutherAI, an influential open-source collective, told me that a lot of the motivation to build AI boils down to: “‘Oh, you’re building the ultimate doom machine that makes you billions of dollars and also king-emperor of earth or kills everybody?’ Yeah, that’s like the masculine dream. You’re like, ‘Fuck yeah. I am the doom king.’” He continues, “Like, I get it. This is very much in the Silicon Valley aesthetic.” (View Highlight)
  • AI ethicists, like the people they advocate for, often report feeling marginalized and cut off from real power, fighting an uphill battle with tech companies who see them as a way to cover their asses rather than as a true priority. Lending credence to this feeling is the gutting of AI ethics teams at many Big Tech companies in recent years (or days). And, in a number of cases, these companies have retaliated against ethics-oriented whistleblowers and labor organizers. (View Highlight)
  • Software engineer Timnit Gebru co-led Google’s ethical AI team until she was forced out of the company in late 2020 following a dispute over a draft paper — now one of the most famous machine learning publications ever. In the “stochastic parrots” paper, Gebru and her coauthors argue that LLMs damage the environment, amplify social biases, and use statistics to “haphazardly” stitch together language “without any reference to meaning.” (View Highlight)
  • Gebru, who is no fan of the AI safety community, has called for enhanced whistleblower protections for AI researchers, which are also one of the main recommendations made in GovAI’s white paper. Since Gebru was pushed out of Google, nearly 2,700 staffers have signed a solidaristic letter, but then Googler Geoff Hinton was not one of them. When asked on CNN why he didn’t support a fellow whistleblower, Hinton replied that Gebru’s critiques of AI “were rather different concerns from mine” that “aren’t as existentially serious as the idea of these things getting more intelligent than us and taking over.” (View Highlight)
  • One of the most common responses to any effort to regulate AI is the “but China!” objection. Altman, for example, told a Senate committee in May that “we want America to lead” and acknowledged that a peril of slowing down is that “China or somebody else makes faster progress.” (View Highlight)
  • If advanced AI really threatens the whole world, domestic regulation alone won’t cut it. But robust national restrictions could credibly signal to other countries how seriously you take the risks. Prominent AI ethicist Rumman Chowdhury has called for global oversight. Bengio says we “have to do both.” (View Highlight)
  • In a controversial Time op-ed from March, Yudkowsky argued to “shut it all down” by establishing an international moratorium on “new large training runs” backed by the threat of military force. Given Yudkowsky’s strong beliefs that advanced AI would be much more dangerous than any nuclear or biological weapon, this radical stance follows naturally. (View Highlight)
  • At the summit, the hosting British government commissioned Bengio to lead production of the first “State of the Science” report on the “capabilities and risks of frontier AI,” in a significant step toward a permanent expert body like the Intergovernmental Panel on Climate Change. (View Highlight)
  • We may not need to wait to find superintelligent systems that don’t prioritize humanity. Superhuman agents ruthlessly optimize for a reward at the expense of anything else we might care about. The more capable the agent and the more ruthless the optimizer, the more extreme the results. (View Highlight)
  • The idea that burning carbon could warm the climate was first hypothesized in the late nineteenth century, but the scientific consensus on climate change took nearly one hundred years to form. The idea that we could permanently lose control to machines is older than digital computing, but it remains far from a scientific consensus. And if recent AI progress continues at pace, we may not have decades to form a consensus before meaningfully acting. (View Highlight)
  • But when you look at the material forces at play, a different picture emerges: in one corner are trillion-dollar companies trying to make AI models more powerful and profitable; in another, you find civil society groups trying to make AI reflect values that routinely clash with profit maximization. (View Highlight)