Dear Stakeholder

rw-book-cover

Metadata

Highlights

  • When you ask us for help, tell us what you’re trying to achieve. Don’t just say “I need this piece of data”… tell us that you’re trying to achieve this higher level goal that you believe will be enhanced or achieved by X outcome, where you could use data to make a more optimal decision or enrich your product. (View Highlight)
  • -serve data is, by nature, meant to deal with relatively simple requests - if the question you are trying to answer in one table or graph is beyond “I want to see this metric/s split by these dimensions, possibly with some table calculations on top like running totals”, then the chances are you need help, where we will build you something more advanced. (View Highlight)
  • Not every data person knows the business like you do - they have to know a lot of other things. Some Data Analysts and Analytics Engineers may know some parts of the business very well, perhaps as well as you, but it’s rare for any data person to know their whole business to a great degree of detail. Data folks are trying to align the world in the data systems AND the actual world, this is rarely (read never) straightforward (View Highlight)
  • Question whether the work you are asking for is worth the total cost. Data resource is scarce, and often what you think may be a low cost piece of work is actually much higher. Be clear about whether this is a one-off piece of work or something that will need to live on. (View Highlight)
  • Data infra work can, should and often does have a long-term positive ROI in being a multiplier on future capacity or capability. It also increases work satisfaction in the data team - in my experience, data folks are neat creatures… they want their repos and workspaces to be as clean as possible. Ignoring data infra work for the long-term is perilous, as it results in lower efficiency, lower satisfaction in the data team… a recipe for turnover and failure. (View Highlight)

New highlights added January 29, 2024 at 6:09 PM

  • I want to be hopeful about some of the possible outcomes of this post. Nevertheless, I feel the post assumes that everyone at the organisation does want to serve it well, but may have different ideas about how best to do this. Sadly, on many occasions in my professional life, I’ve worked with people who would undermine good ideas and people because it suits them, even if it is to the detriment of the organisation. This is where I feel the logic breaks down - but to be fair, nothing works well under these circumstances other than incentivising these self-interested folks to be aligned with their organisation… or better yet, rooting them out. (View Highlight)
  • When you ask us for help, tell us what you’re trying to achieve. Don’t just say “I need this piece of data”… tell us that you’re trying to achieve this higher level goal that you believe will be enhanced or achieved by X outcome, where you could use data to make a more optimal decision or enrich your product. Treating us like data monkeys will make us look for somewhere we will be treated like data people, or will dehumanise us so we behave as we are treated (View Highlight)
  • Where we’ve set up systems to make structured work requests (eg Jira, Linear etc), please try to stick to your original request. This is helped when your request is as detailed as it needs to be with specific details and outcomes. We do understand that, as we go through the work, there may need to be some clarification of elements of the requirements that will be surfaced by doing the work, but this should be within the clear constraints of the original work request. (View Highlight)
  • If our team has taken the time to make it possible to self-serve, do try to do this. There are genuinely people in an org who may not be tech savvy OR have the time to use data tooling themselves OR their time is so valuable that trying to self-serve doesn’t make sense. This is not the case most of the time, though. If my CEO was rushing between back to back meetings, I’d build them what they needed and make it easy to find and use. (View Highlight)
  • There are also scenarios where you can try to self-serve too much and you end up building Frankenstein’s monster of a dashboard, with 107 merged queries etc. Self-serve data is, by nature, meant to deal with relatively simple requests - if the question you are trying to answer in one table or graph is beyond “I want to see this metric/s split by these dimensions, possibly with some table calculations on top like running totals”, then the chances are you need help, where we will build you something more advanced. (View Highlight)
  • What is clearly wrong to you is not always so to data folks. Often when data folks get things wrong and seem puzzled, it’s because they feel like they’ve followed the right process. Even if it’s glaringly obvious that it’s wrong to you, as you know what the business norms are, bear in mind there is probably only a small switch to be made or upstream problem solved that would eliminate the data issue. Data stacks can be sensitive to pretty small issues. (View Highlight)
  • Not every data person knows the business like you do - they have to know a lot of other things. Some Data Analysts and Analytics Engineers may know some parts of the business very well, perhaps as well as you, but it’s rare for any data person to know their whole business to a great degree of detail. Data folks are trying to align the world in the data systems AND the actual world, this is rarely (read never) straightforward. (View Highlight)
  • Involve us in strategy. If data can be used in making decisions/strategy, then we should be involved, end of. Yes, we should be enabling others to use data for this purpose, but there are nuances and expanding circumstances that people who are not data professionals will likely miss. This is why you include Finance, Product and Marketing folks in these discussions - you don’t understand their fields as well as they do. You don’t understand the data field as well as data folks do. We have an equally valuable perspective as folks from these other fields - take our input. Just like any other input, it doesn’t have to be followed fully or at all, but our input is valuable enough to be added into the equation. (View Highlight)
  • Question whether the work you are asking for is worth the total cost. Data resource is scarce, and often what you think may be a low cost piece of work is actually much higher. Be clear about whether this is a one-off piece of work or something that will need to live on. Please be honest about this: most of the time, if a piece of data work is valuable, it lives on for some time - often enough that good rigour around data & analytics engineering is worthwhile. This means, most of the time, the total cost of Data work = Data Engineering + Analytics Engineering + Analytics/Data Science + Maintenance + Upgrades. Bear in mind that it’s therefore unlikely for any piece of work not to cost thousands of dollars. (View Highlight)
  • If you don’t have a data team or data person, do you really need them? There aren’t enough people to go around in the industry - they want to be where they are the most needed, will have the highest impact and will have the most ability to influence their orgs. Hiring data people to do work that isn’t that important when there is so much interesting and important work to be done, is a good way to churn through hiring and waste budget. This is unwise: even if you’re lucky enough to have ample budget in these circumstances, when you do come to need data people… bear in mind they read Glassdoor. (View Highlight)
  • Do challenge priorities, but don’t ask data teams to do more than is reasonable or to look at your work above the rightful top priorities. We’ve all had that unreasonable stakeholder who wanted their work done regardless of whatever workload we had, or to be wrongly prioritised above current work… don’t be that person, it won’t work in your favour. I’ve had amazing stakeholders too, who’ve said things like: “Oh please don’t worry about this before priority X, which is related to the main OKR this quarter”. We’re humans and primates and goodwill with us is an asset - somehow those great stakeholders get their problems solved earlier than they expected. Data folks usually want to help and especially help those stakeholders who are reasonable and kind to us. (View Highlight)
  • Expecting data people to succeed in isolation is unreasonable: there are unicorns out there who can do this, but they are rare. Usually, data folks will hope to have at least a Head of/VP/CDO level person leading Data in the org, as well as some support from other data disciplines, as most data folks aren’t strong in all areas. (View Highlight)
  • Data infra work can, should and often does have a long-term positive ROI in being a multiplier on future capacity or capability. It also increases work satisfaction in the data team - in my experience, data folks are neat creatures… they want their repos and workspaces to be as clean as possible. Ignoring data infra work for the long-term is perilous, as it results in lower efficiency, lower satisfaction in the data team… a recipe for turnover and failure. There has to be balance between this work and the top priorities of the business at any given time. This is why you will see roles such as Data Platform Engineer become prevalent in the future: these folks purely focus on data infra work that others often are forced to neglect. (View Highlight)