Today we’re launching deep research in ChatGPT, a new agentic capability that conducts multi-step research on the internet for complex tasks. It accomplishes in tens of minutes what would take a human many hours. (View Highlight)
Deep research is OpenAI’s next agent that can do work for you independently—you give it a prompt, and ChatGPT will find, analyze, and synthesize hundreds of online sources to create a comprehensive report at the level of a research analyst. Powered by a version of the upcoming OpenAI o3 model that’s optimized for web browsing and data analysis, it leverages reasoning to search, interpret, and analyze massive amounts of text, images, and PDFs on the internet, pivoting as needed in reaction to information it encounters. (View Highlight)
Deep research is built for people who do intensive knowledge work in areas like finance, science, policy, and engineering and need thorough, precise, and reliable research. It can be equally useful for discerning shoppers looking for hyper-personalized recommendations on purchases that typically require careful research, like cars, appliances, and furniture. Every output is fully documented, with clear citations and a summary of its thinking, making it easy to reference and verify the information. It is particularly effective at finding niche, non-intuitive information that would require browsing numerous websites. Deep research frees up valuable time by allowing you to offload and expedite complex, time-intensive web research with just one query. (View Highlight)
Deep research independently discovers, reasons about, and consolidates insights from across the web. To accomplish this, it was trained on real-world tasks requiring browser and Python tool use, using the same reinforcement learning methods behind OpenAI o1, our first reasoning model. While o1 demonstrates impressive capabilities in coding, math, and other technical domains, many real-world challenges demand extensive context and information gathering from diverse online sources. Deep research builds on these reasoning capabilities to bridge that gap, allowing it to take on the types of problems people face in work and everyday life. (View Highlight)
Deep research may take anywhere from 5 to 30 minutes to complete its work, taking the time needed to dive deep into the web. In the meantime, you can step away or work on other tasks—you’ll get a notification once the research is complete. The final output arrives as a report within the chat – in the next few weeks, we will also be adding embedded images, data visualizations, and other analytic outputs in these reports for additional clarity and context. (View Highlight)
Deep research was trained using end-to-end reinforcement learning on hard browsing and reasoning tasks across a range of domains. Through that training, it learned to plan and execute a multi-step trajectory to find the data it needs, backtracking and reacting to real-time information where necessary. The model is also able to browse over user uploaded files, plot and iterate on graphs using the python tool, embed both generated graphs and images from websites in its responses, and cite specific sentences or passages from its sources. As a result of this training, it reaches new highs on a number of public evaluations focused on real-world problems. (View Highlight)
On Humanity’s Last Exam(opens in a new window), a recently released evaluation that tests AI across a broad range of subjects on expert-level questions, the model powering deep research scores a new high at 26.6% accuracy. This test consists of over 3,000 multiple choice and short answer questions across more than 100 subjects from linguistics to rocket science, classics to ecology. Compared to OpenAI o1, the largest gains appeared in chemistry, humanities and social sciences, and mathematics. The model powering deep research showcased a human-like approach by effectively seeking out specialized information when necessary. (View Highlight)
On Humanity’s Last Exam(opens in a new window), a recently released evaluation that tests AI across a broad range of subjects on expert-level questions, the model powering deep research scores a new high at 26.6% accuracy. This test consists of over 3,000 multiple choice and short answer questions across more than 100 subjects from linguistics to rocket science, classics to ecology. Compared to OpenAI o1, the largest gains appeared in chemistry, humanities and social sciences, and mathematics. The model powering deep research showcased a human-like approach by effectively seeking out specialized information when necessary. (View Highlight)
On Humanity’s Last Exam(opens in a new window), a recently released evaluation that tests AI across a broad range of subjects on expert-level questions, the model powering deep research scores a new high at 26.6% accuracy. This test consists of over 3,000 multiple choice and short answer questions across more than 100 subjects from linguistics to rocket science, classics to ecology. Compared to OpenAI o1, the largest gains appeared in chemistry, humanities and social sciences, and mathematics. The model powering deep research showcased a human-like approach by effectively seeking out specialized information when necessary (View Highlight)
On Humanity’s Last Exam(opens in a new window), a recently released evaluation that tests AI across a broad range of subjects on expert-level questions, the model powering deep research scores a new high at 26.6% accuracy. This test consists of over 3,000 multiple choice and short answer questions across more than 100 subjects from linguistics to rocket science, classics to ecology. Compared to OpenAI o1, the largest gains appeared in chemistry, humanities and social sciences, and mathematics. The model powering deep research showcased a human-like approach by effectively seeking out specialized information when necessary. (View Highlight)
On Humanity’s Last Exam(opens in a new window), a recently released evaluation that tests AI across a broad range of subjects on expert-level questions, the model powering deep research scores a new high at 26.6% accuracy. This test consists of over 3,000 multiple choice and short answer questions across more than 100 subjects from linguistics to rocket science, classics to ecology. Compared to OpenAI o1, the largest gains appeared in chemistry, humanities and social sciences, and mathematics. The model powering deep research showcased a human-like approach by effectively seeking out specialized information when necessary.
Model
Accuracy (%)
GPT-4o
3.3
Grok-2
3.8
Claude 3.5 Sonnet
4.3
Gemini Thinking
6.2
OpenAI o1
9.1
DeepSeek-R1*
9.4
OpenAI o3-mini (medium)*
10.5
OpenAI o3-mini (high)*
13.0
OpenAI deep research**
26.6
Model is not multi-modal, evaluated on text-only subset.
**with browsing + python tools (View Highlight)
On Humanity’s Last Exam(opens in a new window), a recently released evaluation that tests AI across a broad range of subjects on expert-level questions, the model powering deep research scores a new high at 26.6% accuracy. This test consists of over 3,000 multiple choice and short answer questions across more than 100 subjects from linguistics to rocket science, classics to ecology. Compared to OpenAI o1, the largest gains appeared in chemistry, humanities and social sciences, and mathematics. The model powering deep research showcased a human-like approach by effectively seeking out specialized information when necessary.
Model
Accuracy (%)
GPT-4o
3.3
Grok-2
3.8
Claude 3.5 Sonnet
4.3
Gemini Thinking
6.2
OpenAI o1
9.1
DeepSeek-R1*
9.4
OpenAI o3-mini (medium)*
10.5
OpenAI o3-mini (high)*
13.0
OpenAI deep research**
26.6
Model is not multi-modal, evaluated on text-only subset.
**with browsing + python tools (View Highlight)
Deep research unlocks significant new capabilities, but it’s still early and has limitations. It can sometimes hallucinate facts in responses or make incorrect inferences, though at a notably lower rate than existing ChatGPT models, according to internal evaluations. It may struggle with distinguishing authoritative information from rumors, and currently shows weakness in confidence calibration, often failing to convey uncertainty accurately. At launch, there may be minor formatting errors in reports and citations, and tasks may take longer to kick off. We expect all these issues to quickly improve with more usage and time. (View Highlight)